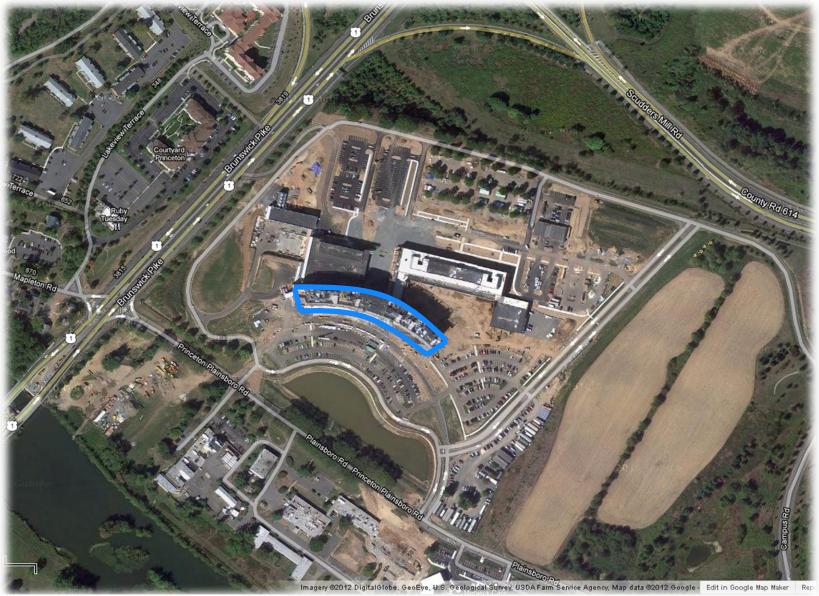
- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

University Medical Center of Princeton Replacement Hospital **Turner**

PENNSTATE

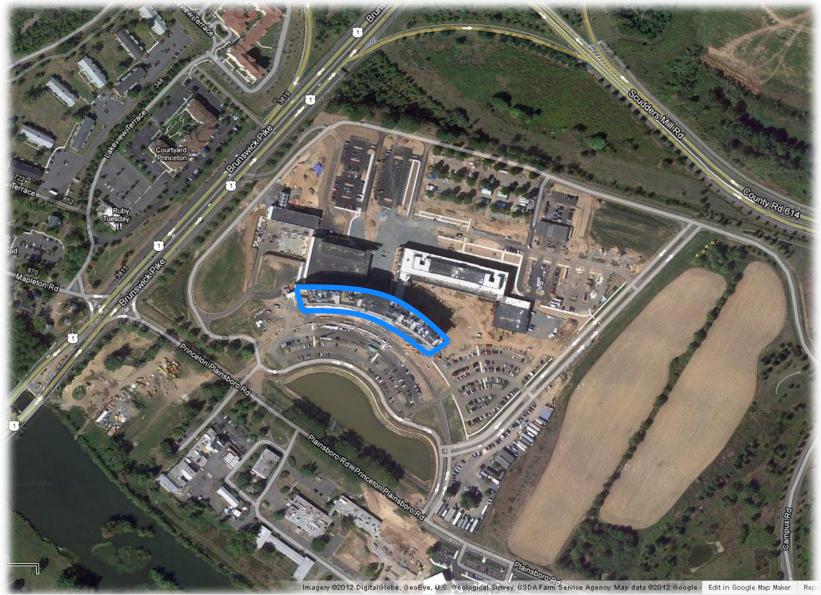
Timothy Berteotti Pennsylvania State University Architectural Engineering Department Mechanical Option Advisor: Dr. Treado May 9, 2012

- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices


- Princeton Healthcare Systems • Turner Construction
- Plainsboro, NJ
- 639,000 SF Total
- \$425 Million
- May 2012

Building Stats

- Patient Tower
 - 269 Patient Rooms
- D&T
- Building 2



googlemaps.com

- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

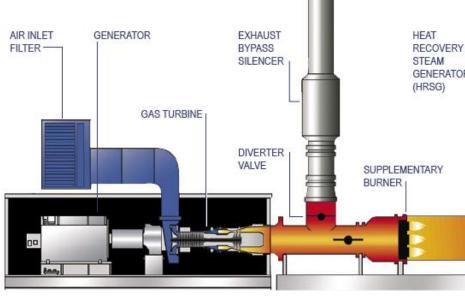
googlemaps.com

• CUP

• Introduction

University Medical Center of Princeton Overview

- Building
- Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices


Fuel	Ele
Input	C
(MMBH)	(
100.4	

Current System

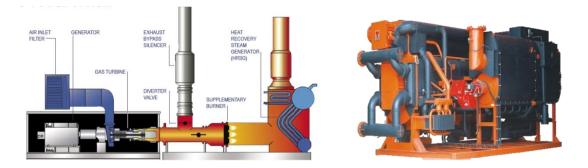
CUP

- Chilled Water
- 150 psi Steam
- Electricity

Sola	Solar Mars 90 Combustion Gas Turbine										
	Steam	Steam									
lectrical	Output	Output		Thermal	Total						
Output	Unfired	Fired	Electrical	Efficiency	Efficiency						
(MW)	(kpph)	(kpph)	Efficiency	Unfired	Unfired						
9.5	46.8	113.3	32%	56%	88%						

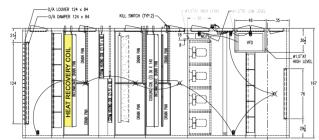
Steam

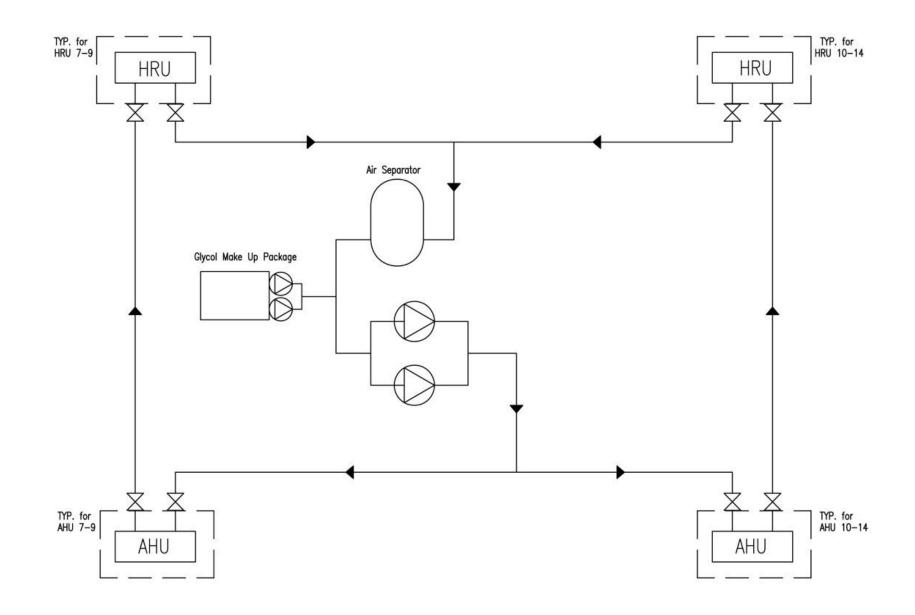
- 150 psi \rightarrow 15 psi
- Domestic HW
- Heating HW
- Sterilization

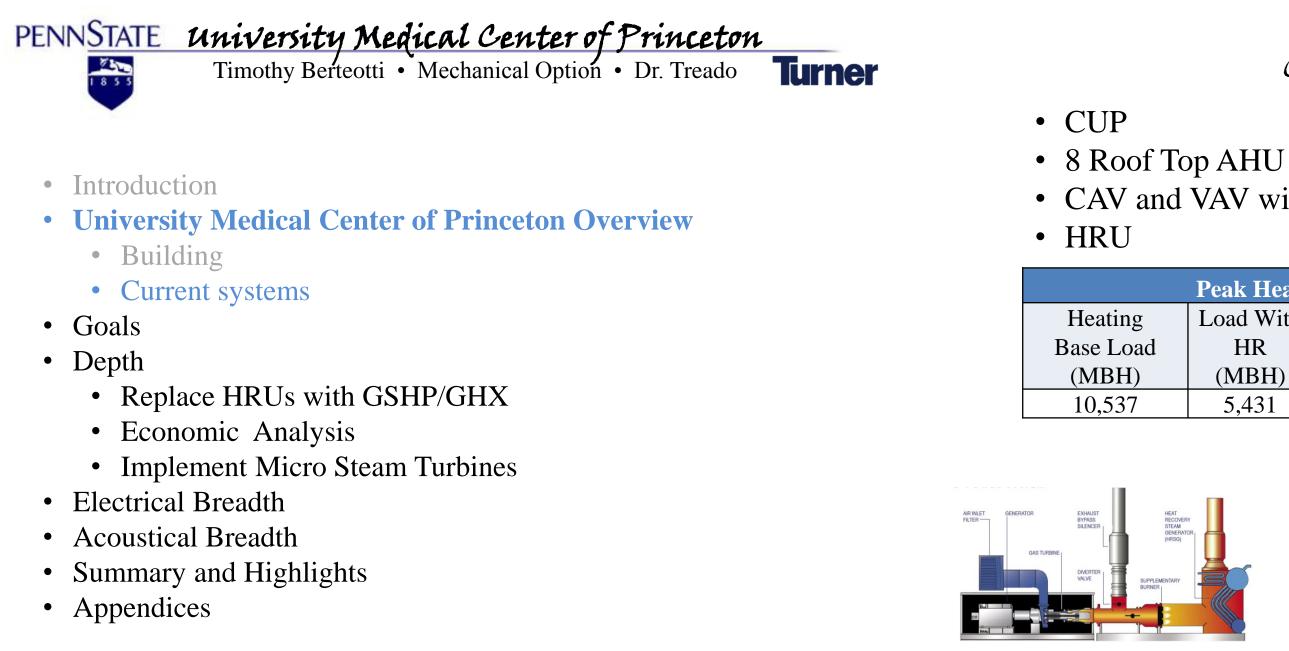

masdar.daralriyadh.com

1855

- CUP
- 8 Roof Top AHU
- HRU

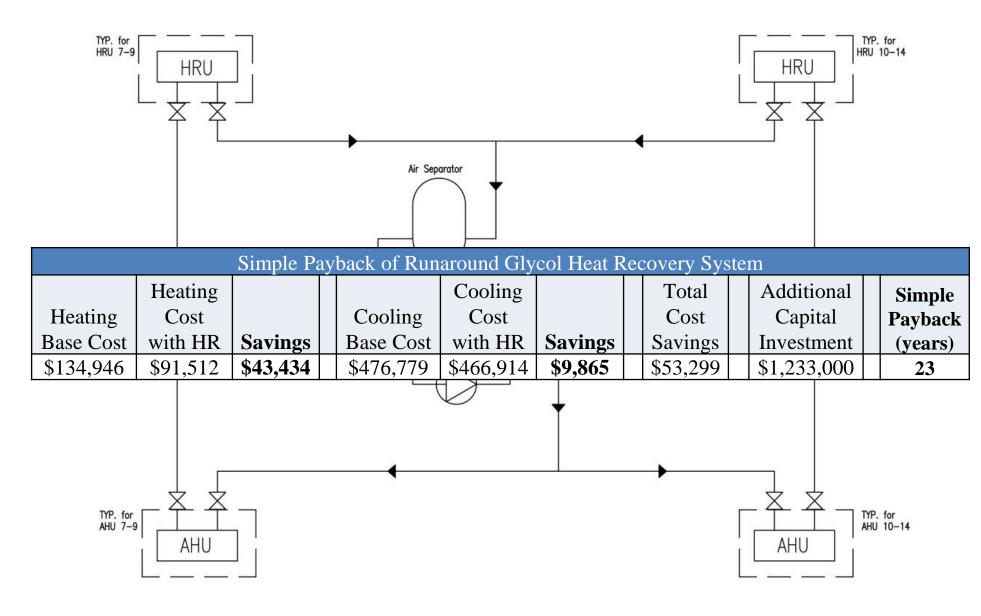


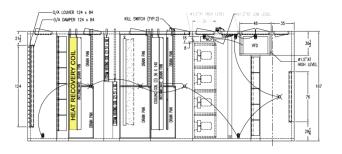

- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices



Current System

• CAV and VAV with Reheat




Current System

• CAV and VAV with Reheat

Peak Heating and Cooling Savings from HR									
Load With			Cooling	Load with					
HR	Savings		Base Load	HR	Savings				
(MBH)	(MBH)		(Tons)	(Tons)	(Tons)				
5,431	5,106		1,431	1,424	7				

PHS Design Objectives

- Improved Performance
- Environmental Responsibility

- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

• Optimum Healing Environment

- Provide Alternative
- Discover Unique Options
- Compare Energy/Cost

Electrical Breadth Redesign of Power Distribution

Acoustical Breadth **Evaluate Current Room Acoustics Recommend Solution**

Princeton Health Care Systems

PENNSTATE University Medical Center of Princeton	
PENNSTATE University Medical Center of Princeton Timothy Berteotti Mechanical Option Dr. Treado	Size heat pump Need o
 Introduction University Medical Center of Princeton Overview Building 	Size to match w need 1 Additie
Current systemsGoals	Size to match pr Need 3
 Depth Replace HRUs with GSHP/GHX 	What if no HP a
Economic AnalysisImplement Micro Steam Turbines	Lc = 25,637 ft /
Electrical BreadthAcoustical Breadth	8,008 MBH He
Summary and HighlightsAppendices	Additional 2,90

p to match precooling load one 8 Ton

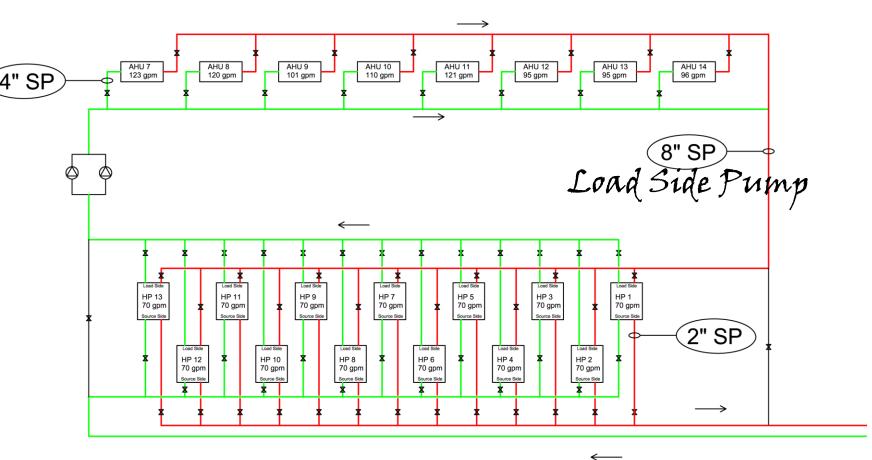
water flow of 900 gpm 13 in parallel tional 367 Tons Peak Cooling Savings

oreheating

30 units

and only GHX?

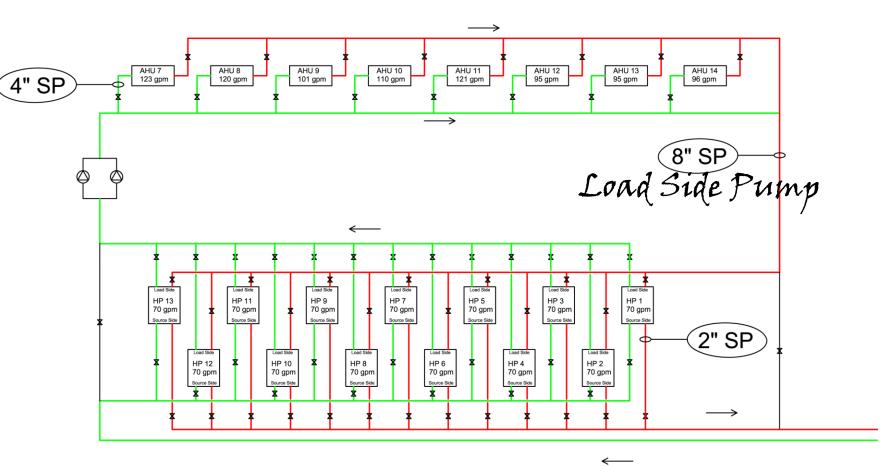
/ HP => 333,281 feet total

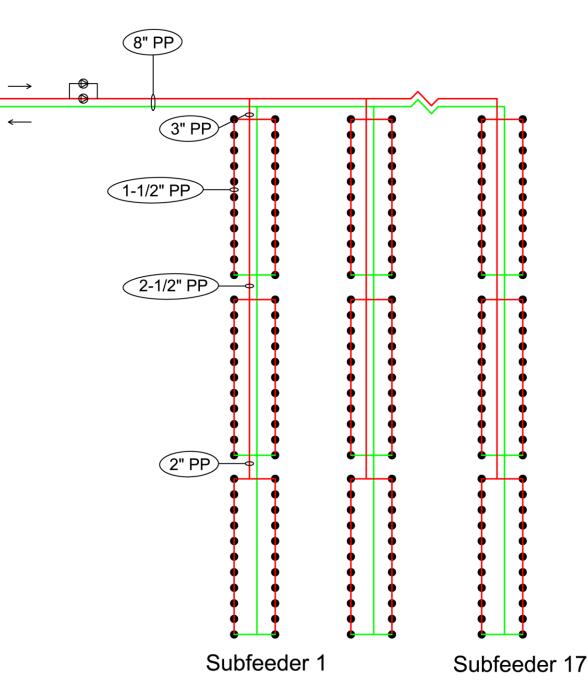

eating Capacity

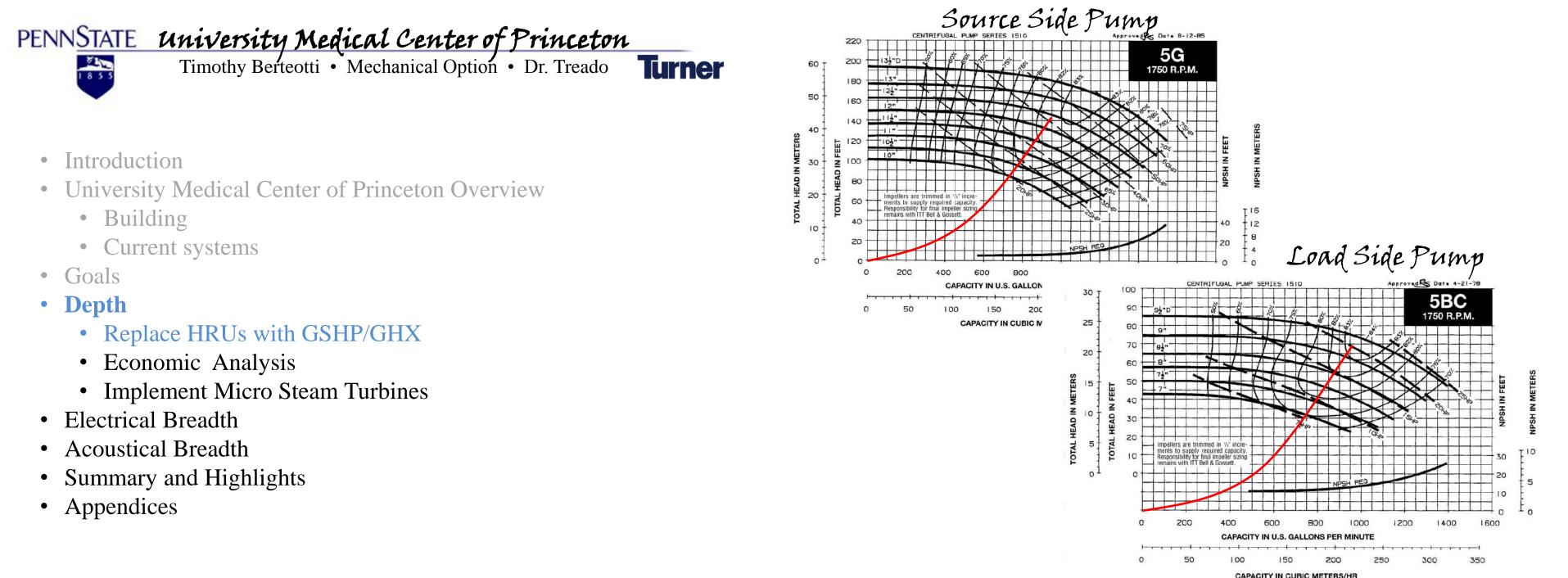
02 MBH Peak Heating Savings

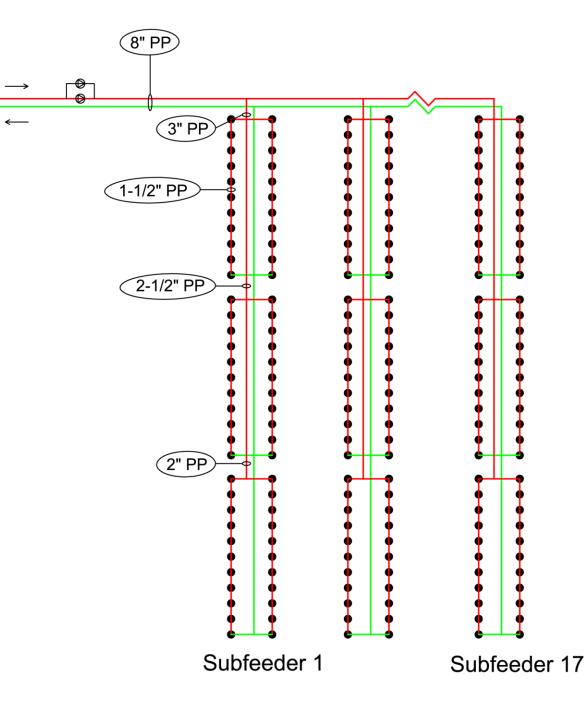
	Peak Heating and Cooling Savings from HR										
Heating	Load With			Cooling	Load with						
Base Load	HR	Savings		Base Load	HR	Savings					
(MBH)	(MBH)	(MBH)		(Tons)	(Tons)	(Tons)					
10,537	5,431	5,106		1,431	1,424	7					

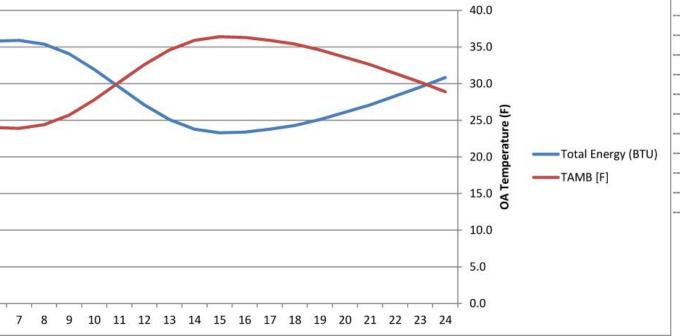
5	SOURC	E COI	L		******	ngan ang dayang barandan								LOAD CO	NL													
		Pres	sure				Flow 35	.0 gpr	n					Flow 53	.0 gpr	n				Flow 70.0 gpm								
EWT (F)	gpm		op	EWT (F)	TC (MBtuh)	Power (kW)	THR (MBtuh)	LWT (F)	EER	Pres Dr	sure op	TC (MBtuh)	Power (kW)	THR (MBtuh)	LWT (F)	EER	Pressure Drop					TC (MBtuh)	Power (kW)	THR (MBtuh)	LWT (F)	EER		sure
		psig	ft wg		(indically	(((())))	(motally	.,		psig	ft wg	(instany	(((1))	(Indenty	(1)	-	psig	ft wg	(morany	(111)	(indiany	(1)		psig	ft wg			
	35	1.19	2.75	50 60 70 80 90	129.3 141.0 151.3 160.2 167.5	6.84 6.90 7.00 7.08 7.14	152.7 164.5 175.2 184.4 191.9	35.2 43.9 52.7 61.7 70.9	18.6 20.1 21.3 22.4 23.3	0.54 0.30 0.17 0.15 0.12	1.20 0.70 0.40 0.30 0.30	271.2 294.1 313.9 330.2 342.7	13.86 13.92 14.09 14.24 14.35	318.5 341.6 362.0 378.8 391.6	39.8 48.9 58.2 67.5 77.1	19.6 21.1 22.3 23.2 23.9	3.60 3.44 3.29 3.15 3.02	8.30 7.94 7.60 7.28 6.97	277.3 299.9 319.0 334.5 345.8	13.94 13.97 14.14 14.28 14.38	324.9 347.5 367.3 383.2 394.8	42.1 51.4 60.9 70.4 80.1	19.9 21.5 22.6 23.4 24.0	6.50 6.18 5.91 5.67 5.47	15.00 14.28 13.64 13.09 12.64			
50	53	3.59	8.30	50 60 70 80 90	131.1 142.7 152.9 161.6 168.6	6.34 6.41 6.47 6.53 6.57	152.8 164.6 175.0 183.8 191.0	35.0 43.7 52.5 61.5 70.7	20.2 21.9 23.3 24.5 25.5	0.54 0.30 0.17 0.15 0.12	1.20 0.70 0.40 0.30 0.30	275.0 297.6 316.8 332.6 344.8	12.76 12.90 13.01 13.11 13.18	318.5 341.6 361.2 377.4 389.8	39.6 48.8 58.0 67.4 77.0	21.5 23.1 24.3 25.4 26.2	3.60 3.44 3.29 3.15 3.02	8.30 7.94 7.60 7.28 6.97	281.1 303.3 321.9 336.8 347.9	12.80 12.93 13.04 13.13 13.20	324.8 347.4 366.4 381.6 392.9	42.0 51.3 60.8 70.4 80.1	22.0 23.4 24.7 25.6 26.4	6.50 6.18 5.91 5.67 5.47	15.00 14.28 13.64 13.09 12.64			
	70	6.50	15.02	50 60 70 80 90	131.7 143.4 153.5 162.2 169.1	6.12 6.18 6.22 6.26 6.29	152.6 164.4 174.8 183.5 190.6	35.0 43.6 52.5 61.5 70.7	21.1 22.8 24.3 25.6 26.7	0.54 0.30 0.17 0.15 0.12	1.20 0.70 0.40 0.30 0.30	276.2 298.9 318.1 333.7 345.6	12.30 12.41 12.50 12.57 12.67	318.2 341.2 360.7 376.6 388.7	39.6 48.7 58.0 67.4 77.0	22.5 24.1 25.5 26.6 27.4	3.60 3.44 3.29 3.15 3.02	8.30 7.94 7.60 7.28 6.97	282.4 304.6 323.1 337.8 348.6	12.33 12.43 12.52 12.59 12.63	324.5 347.0 365.8 380.8 391.7	41.9 51.3 60.8 70.3 80.0	25.8 26.8	6.50 6.18 5.91 5.67 5.47	15.00 14.28 13.64 13.09 12.64			
	35	1.01	2.34	50 60 70 80 90	118.9 132.6 144.9 155.5 164.0	8.26 8.38 8.49 8.59 8.66	147.0 161.2 173.9 184.8 193.6	36.4 44.8 53.4 62.2 71.3	13.9 15.4 16.7 17.8 18.7	0.54 0.30 0.17 0.15 0.12	1.20 0.70 0.40 0.30 0.30	251.5 279.0 302.7 322.2 336.8	16.64 16.88 17.10 17.27 17.40	308.3 336.6 361.1 381.1 396.2	40.5 49.5 58.6 67.8 77.3	15.1 16.5 17.7 18.7 19.4	3.60 3.44 3.29 3.15 3.02	8.30 7.94 7.60 7.28 6.97	258.3 285.6 308.7 327.1 340.3	16.70 16.94 17.15 17.32 17.43	315.3 343.4 367.2 386.2 399.8	42.6 51.8 61.2 70.7 80.3	15.5 16.9 18.0 18.9 19.5	6.50 6.18 5.91 5.67 5.47	15.00 14.28 13.64 13.09 12.64			
70	53	3.29	7.60	50 60 70 80 90	122.4 135.7 147.5 157.5 165.4	7.84 7.92 7.99 8.04 8.09	149.1 162.7 174.7 184.9 193.0	36.0 44.5 53.1 62.0 71.1	15.1 16.7 18.1 19.3 20.2	0,54 0.30 0.17 0.15 0.12	1.20 0.70 0.40 0.30 0.30	258.4 284.8 307.3 325.5 338.9	15.76 15.91 16.04 16.15 16.23	312.2 339.1 362.1 380.6 394.2	40.2 49.3 58.4 67.7 77.2	16.4 17.9 19.2 20.2 20.9	3.60 3.44 3.29 3.15 3.02	8.30 7.94 7.60 7.28 6.97	265.2 291.2 313.0 330.1 341.9	15.80 15.95 16.08 16.17 16.24	319.1 345.6 367.9 385.3 397.4	42.4 51.7 61.1 70.6 80.2	16.8 18.3 19.5 20.4 21.1	6.50 6.18 5.91 5.67 5.47	15.00 14.28 13.64 13.09 12.64			
	70	5.91	13.64	50 60 70 80 90	124.0 137.0 148.5 158.3 166.1	7.64 7.70 7.75 7.79 7.82	150.0 163.3 175.0 184.9 192.7	35.8 44.3 53.0 61.9 71.0	15.7 17.4 18.8 20.0 21.0	0.54 0.30 0.17 0.15 0.12	1.20 0.70 0.40 0.30 0.30	261.5 287.3 309.2 326.9 339.9	15.34 15.45 15.55 15.62 15.68	313.9 340.0 362.3 380.2 393.4	40.1 49.2 58.3 67.7 77.2	17.0 18.6 19.9 20.9 21.7	3.60 3.44 3.29 3.15 3.02	8.30 7.94 7.60 7.28 6.97	268.2 293.6 314.8 331.4 343.0	15.37 15.48 15.57 15.64 15.69	320.6 346.4 367.9 384.8 396.5	42.3 51.6 61.0 70.5 80.2		6.50 6.18 5.91 5.67 5.47	15.00 14.28 13.64 13.09 12.64			
	35	0.86	2.03	50 60 70	106.2 121.2 134.8	9.76 9.90 10.04	139.4 154.9 169.1	37.9 46.2 54.6	10.3 11.7 13.0	0.54 0.30 0.17	1.20 0.70 0.40	225.8 256.2 283.6	19.64 19.94 20.22	292.8 324.3 352.6	41.5 50.3 59.3		3.60 3.44 3.29	8.30 7.94 7.60	232.6 263.1 290.4	19.71 20.01 20.28	299.8 331.4 359.6	43.4 52.5 61 7			15.00 14.28 13.64			


- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices


Source Side Pump




- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

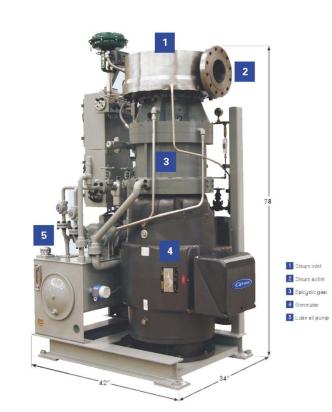

Source Side Pump

PENNSTATE University Medical Center of Princeton											Total Energy
Timothy Berteotti • Mechanical Option • Dr. Treado Turner	Hour of Year	TAMB [F]	AHU - 7	AHU - 8	AHU - 9		AHU - 11	AHU - 12	AHU - 13	AHU - 14	(BTU)
18.5.5 Thioday Berteotta Weenamear Option DI. Heado Chiller	1	27.8	959412	1.01E+06	744807	839189	1.01E+06	663101	663101	502921	6386531
	2	26.7	992850	1.04E+06	770787	868389	1.04E+06	686267	686267	520596	6609156
$\dot{v}_{H} = 123$ [gal/min] $\left[0,1337 + \frac{ft^3}{2}\right]$ Volumetric Flow rate of Water EES to calculate hourly energy savings	3	25.7	1.02E+06	1.08E+06	794437	894965	1.07E+06	707357	707357	536693	6811809
$\dot{v}_{H} = 123 \text{ [gal/min]} \cdot \left 0.1337 \cdot \frac{\text{ft}^{3}}{\text{gal}} \right $ Volumetric Flow rate of Water ELS to Calculate Hourry energy savings	4	25.0	1.04E+06		811010	913586	1.10E+06	722136	722136	547978	6953846
p = 14.7 [psi] Atmospheric pressure in psi	5	24.4	1.06E+06	1.12E+06	825226	929557	1.12E+06	734815	734815	557661	7077074
T _{Cjn} = 11 [F] Entering Air DB Temperature	6	24.0	1.08E+06		834711	940211	1.13E+06	743274	743274	564122	7157592
\dot{V}_{c} = 46000 [ft ³ /min] Volumetric Flow rate of Air	7	23.9	1.08E+06		837083	942875	1.13E+06	745389	745389	565738	7178474
U = 681.5 [BTU/hr·ft ² ·F] Heat Transfer coeficient	8	24.4	1.06E+06		825227	929558	1.12E+06	734815	734815	557661	7077076
A = 105 [ft ²] <i>Total face area</i>	9	25.7 27.8	1.02E+06	1.08E+06	794437	894965	1.07E+06	707356	707356	536693	6811807
рн = p['Water', T = T _{HJn} , P = p] Water Density as defined by EES tables	10	30.2	959412	1.01E+06	744807	839189	1.01E+06	663101	663101	502921	6386531
$\dot{\mathbf{m}}_{\mathrm{H}} = \rho_{\mathrm{H}} \cdot \dot{\mathbf{V}}_{\mathrm{H}} \cdot \mathbf{b}_{\mathrm{H}} = \mathbf{b}_{\mathrm{H}} \cdot \mathbf{b}_{\mathrm{H}} + \mathbf{b}_{\mathrm{H}} \mathbf{b}_{\mathrm{H}} + \mathbf{b}_{\mathrm{H}} \mathbf{b}_{\mathrm{H}} \mathbf{b}_{\mathrm{H}} \mathbf{b}_{\mathrm{H}}$	11	50.2	886613	932020	688246	775605	929921	612678	612678	464472	5902233
			Heatir	ng Energ	v Savin	gs and (OA Tem	p 1st 24	Hours		
$\rho_{c} = \rho ['Air', T = T_{c,in}, P = p]$ Air Density			mean		, -	80 0110	•/ • • • • • •	P			
$\dot{\mathbf{m}}_{c} = \rho_{c} \cdot \dot{\mathbf{V}}_{c} \cdot \left[60 \cdot \frac{\min}{hr} \right]$ Air mass flow rate	8000								40	0.0	10110010010010
//Must guess outlet temperatures to be able to calculate specific heat capacities. These values will be commented out once evaluated once	7000								35	5.0	
//Based on a precooling delta T estimate of 7 degrees F for water and 8 degrees F for air	-										
$c_{H} = Cp \left[Water', T = \frac{T_{H,in} + T_{H,out}}{2}, P = p \right]$ Specific Heat Capacity of Water	6000			\rightarrow					30		
$c_{c} = Cp \left[Air', T = \frac{T_{c,in} + T_{c,out}}{2} \right]$ Specific heat capacity of Air	5000								25	0.0	
$\mathbf{\check{C}}_{H} = \mathbf{\check{m}}_{H} \cdot \mathbf{c}_{H}$	H 4000								20		otal Energy (BTU)
$\dot{\mathbf{c}}_{c} = \dot{\mathbf{m}}_{c} \cdot \mathbf{c}_{c}$	Ē ⁴⁰⁰⁰								20	đ	AMB [F]
Č _{min} = Min [Č _c , Č _H] <i>min capacitance rate</i>	3000									5.0 DA Te	
Č _{max} = Max [Č _c , Č _H] max capacitance rate										U U	internet and
$NTU = \frac{U \cdot A}{C_{min}} number \ of \ transfer \ units$	2000								10	0.0	
$\epsilon = HX ['crossflow_{both,unmixed}', NTU, C_C, C_H, 'epsilon'] Access effectiveness-NTU solution$	1000								5.0	0	
$\dot{\mathbf{q}}_{max} = \dot{\mathbf{c}}_{min} \cdot [\mathbf{T}_{H,in} - \mathbf{T}_{C,in}]$ Max possible heat transfer rate											
q = q _{max} · ε Actual Heat Transfer rate	0	1 1 1 1	1 1 1						, , , , , 0.0	0	
$T_{c,out} = T_{c,in} + \frac{\dot{q}}{\dot{c}_c}$ Air exit temp	1	2 3 4 5	678	9 10 1	1 12 13	14 15 16	17 18 19	20 21 22	23 24		
$T_{H,out} = T_{H,in} - \frac{\dot{q}}{\dot{c}_H}$ Water exit temp											

Simple Payback for Heat Pu

	Energy Savings of GSHP and GHX and hours of Operation									
Peak										
Heating	Annual			Peak	Annual					
Capacity	Heating			Cooling	Cooling					
Peak	Savings	Operating		Capacity	Savings	Operating				
(MBTU)	(MBH)	Hours		(Tons)	(Tons)	Hours				
7,178.50	18,693,690	5,243		219	101,830	983				

Alternative Heating Savings				Alterna	ative Cooling Sa	avings
Annual				Annual		
Heating	Natural Gas			Cooling	Natural Gas	
Savings	Savings	NG		Savings	Savings	NG
(MBH)	(Therms)	Savings		(Tons)	(Therms)	Savings
18,693,690	333,816	\$65,428		1,221,956	101,830	\$19,959


Sim	Simple Payback for GSHP and GHX Alternative									
Total		Total		Additional		Simple				
NG	Operating	Cost		Capital		Payback				
Savings	Cost	Savings		Investment		(years)				
\$85,387	\$29,939	\$55,448		\$6,359,695		115				

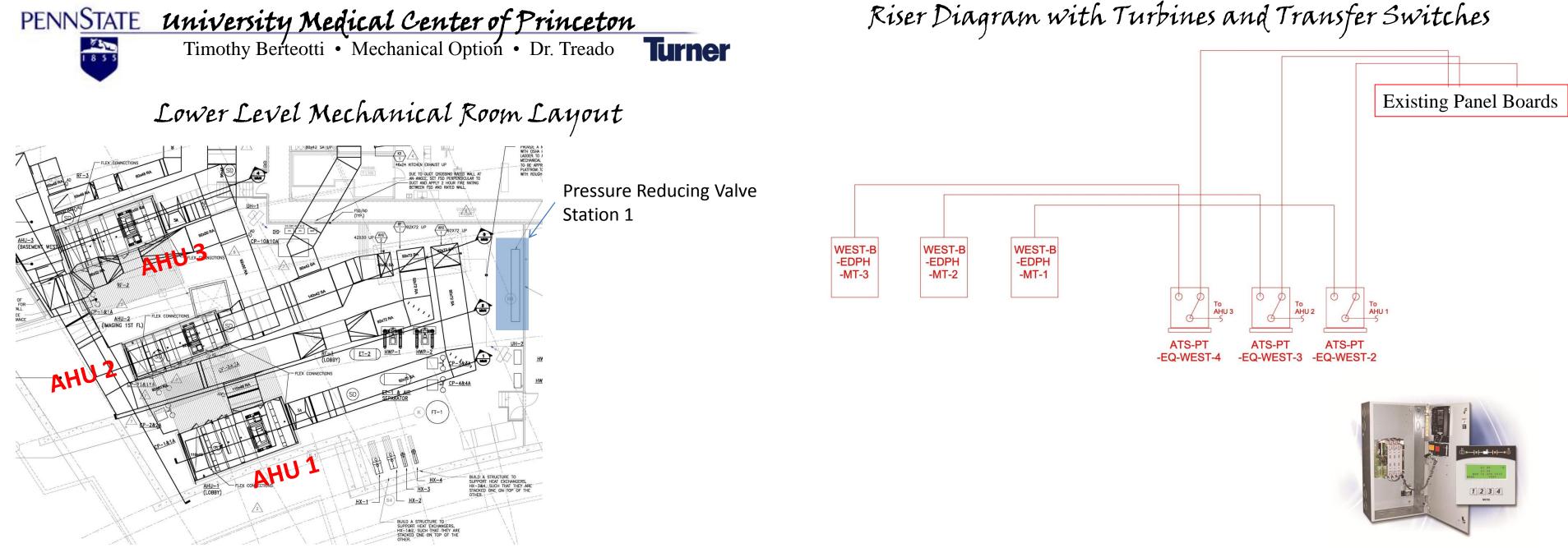
rump	System	to	Base	System	

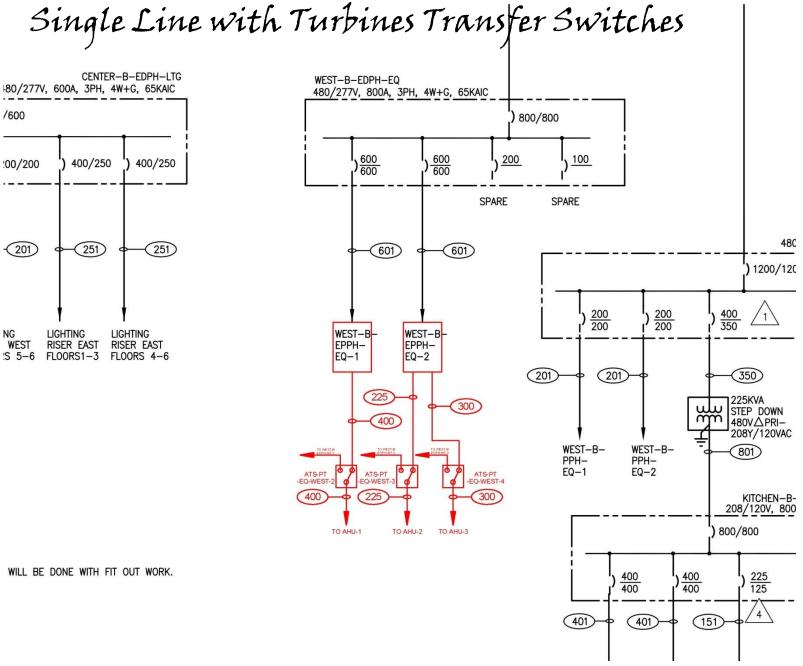
Compared to 23 for Glycol Runaround

- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

Carrier.com

Micro Steam Turbine

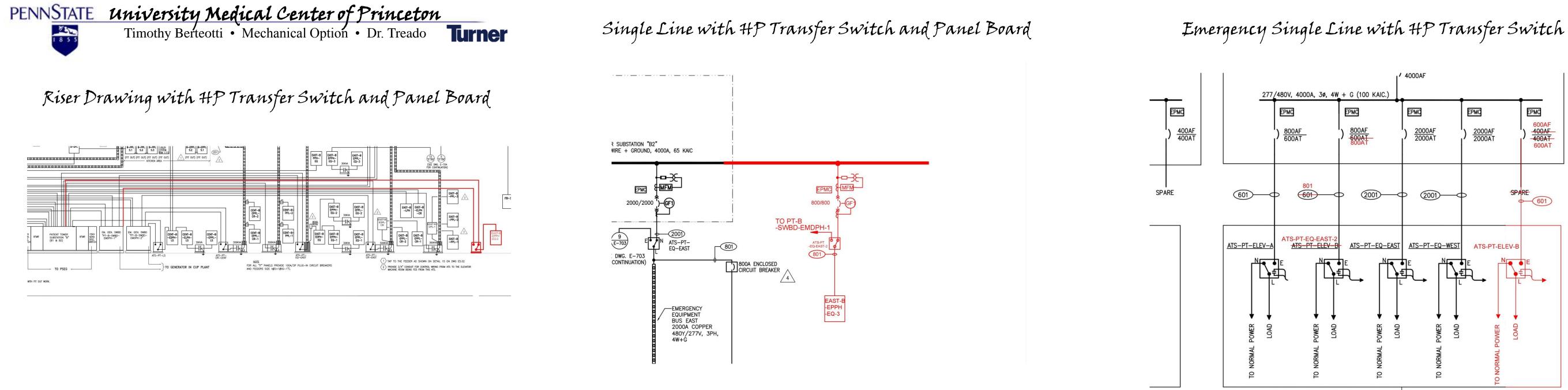

- Location of PRV
- Flow Rate
- Energy Output
 - What to power?
 - Paralleling Switchgear
 - Transfer Switch

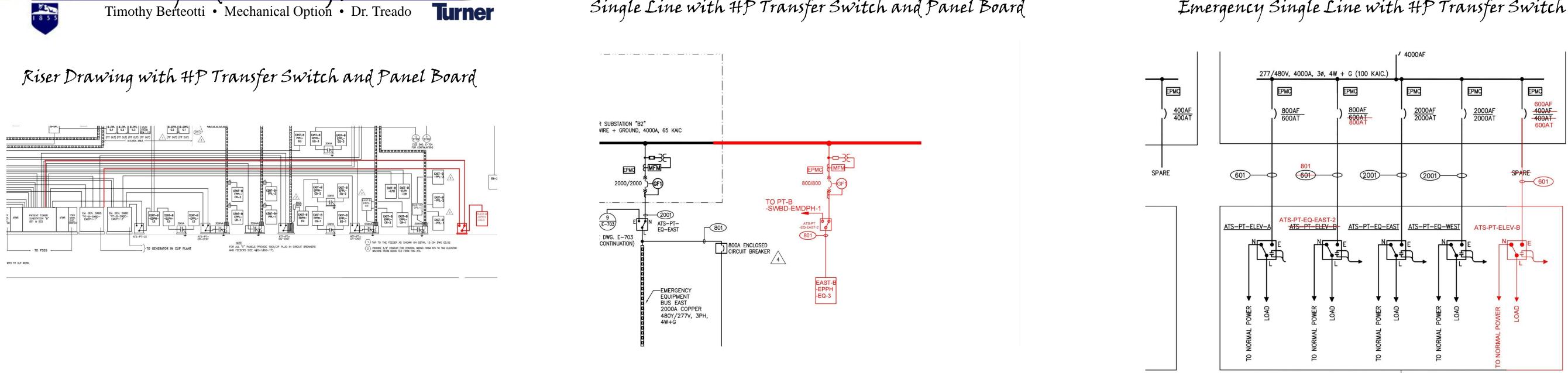

Annual Peak Savings 461 kW

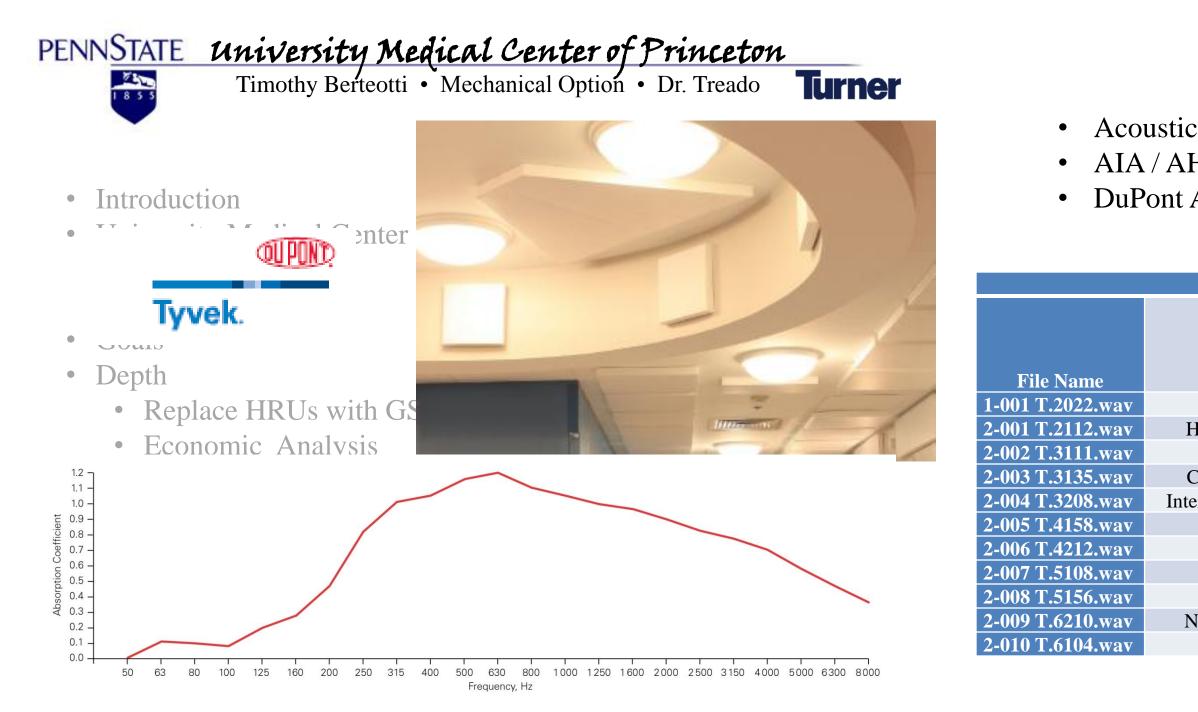
Micr	Microsteam Turbine Design Criteria									
Inlet	Outlet	Steam	Steam							
Pressure	Pressure	Flow Rate	Temperature							
(psi)	(psi)	(lb/hr)	(°F)							
150	15	41,400	365.87							

Microsteam Turbine Performanc Data						
Inlet	Outlet	Steam	Steam	Electrical		
Pressure	Pressure	Flow Rate	Temperatur	Output		
(psi)	(psi)	(lb/hr)	e (°F)	(kW)		
150	15	11,150	366	275		

AHU Electrical Load Requirements								
Unit	HP	kVA	FLA	Volt	Phase	kW		
AHU 1	12x10 = 120	130	156	480	3	191		
AHU 2	9x7.5 = 67.5	80	96	480	3	118		
AHU 3	12x7.5 = 90	103	124	480	3	152		

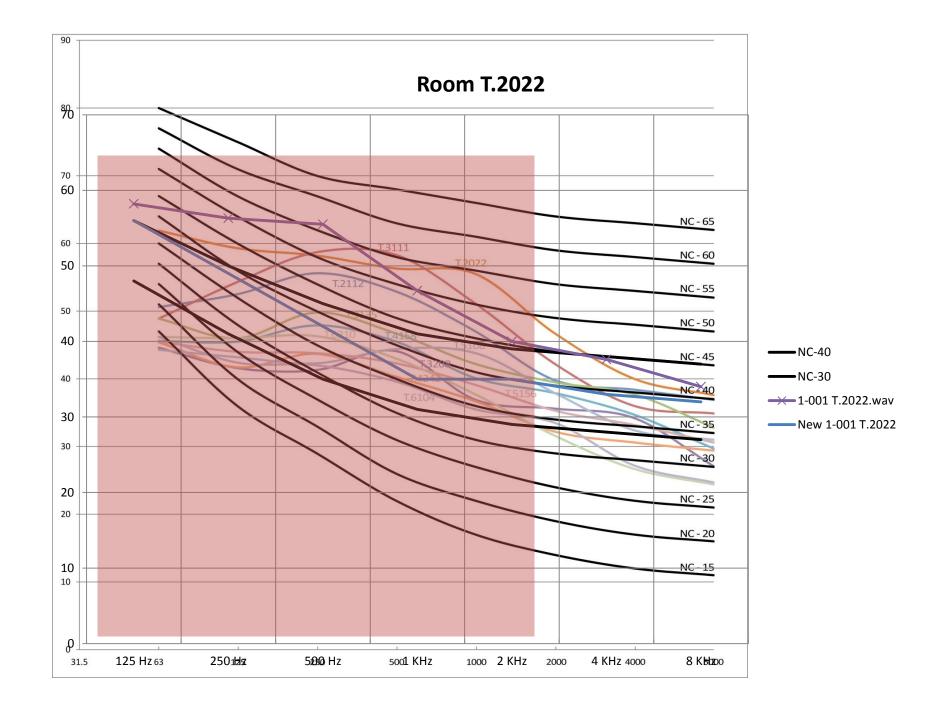



WILL BE DONE WITH FIT OUT WORK


00/200

- 201

· – – – –



Acoustical Breadth

Acoustical Comfort Improves Healing Process
AIA / AHA dBA and NC standards
DuPont Audio Comfort Panels with Tyvek Cover

AudioComfort Panel Area Summary							
				DuPont Panel	Area of		
	Compliant			Area Required	Dupont		
	based on		Compliant	to meet NC	panel to		
Room Type	dBA	NC	based in NC	compliance	meet dBA		
Staff Work	NO	55	NO	245	400		
Hold Recovery Room	NO	48	NO	310	310		
Family Respite	NO	56	NO	483	250		
Critical Patient Room	NO	43	Yes		100		
ermediate Patient Room	Yes	39	Yes				
Patient Room	Yes	41	Yes				
Patient Room	Yes	36	Yes				
Patient Room	Yes	43	Yes				
Patient Room	Yes	38	Yes				
Nursery Patient Room	Yes	38	Yes				
Patient Room	Yes	35	Yes				

- Evaluated HR System
- Designed GSHP / GHX
- Final Remarks

- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

Summary and Highlights

• 23 Year Payback

• 115 Year Payback

- Implemented Microsteam Turbines
 - Peak savings 461 kW
- Evaluated Room Acoustics
 - DuPont AudioComfort Panels

Simple Payback of Runaround Glycol Heat Recovery System								
	Heating			Cooling		Total	Additional	Simple
Heating	Cost		Cooling	Cost		Cost	Capital	Payback
Base Cost	with HR	Savings	Base Cost	with HR	Savings	Savings	Investment	(years)
\$134,946	\$91,512	\$43,434	\$476,779	\$466,914	\$9,865	\$53,299	\$1,233,000	23

Simple Payback for GSHP and GHX Alternative							
Total		Total		Additional		Simple	
NG	Operating	Cost		Capital		Payback	
Savings	Cost	Savings		Investment		(years)	
\$85,387	\$29,939	\$55,448		\$6,359,695		115	

- project.
- wonderful building.
- help me with my requests
- thesi
- construction photos.
- model

- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

Acknowledgements

• I would like to take this opportunity to thank all those who played a vital role in this

Turner Construction, for granting access to the drawings and information on this

Chris Auer and the rest of the field office at UMCP for taking the time out of their day to

Pam Garbini, for sharing her knowledge and wisdom about UMCP and the AE senior

Princeton Heathcare Systems for granting me permission to use their building and

Syska Hannessy, for sharing their assumptions and methods for generating an energy

Dr. Stephen Treado my thesis advisor.

• The rest of the AE faculty and staff and students.

References

ASHRAE (2007). Handbook – Fundamentals. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

ASHRAE (2007). Handbook – Applications. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

Author, RSMeans mechanical cost data 2012, Norwell, MA: RSMeans, 2011,

Author. RSMeans Plumbing cost data, 2011. Kingston, MA: R.S. Means Co, 2010.

Davenny, Benjamin. Green Guide for Health Care Technical Brief: Acoustic Environment. 2007

Dept, Rsm. Heavy Construction Cost Data. City: R S Means Co, 2011

HOK/RMJM Hillier - A Joint Venture. Architectural Construction Documents. HOK/RMJM Hillier. New York, NY and Princeton, NJ.

McQuay. Geothermal Heat Pump Design Manual. McQuay Air Conditioning. 2002.

National Fire Protection Association. <u>NEC 2008</u>. National Fire Protection Association. Massachusetts. 2008

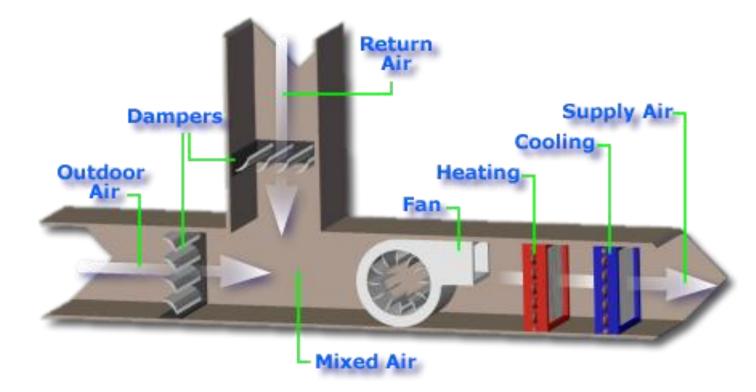
Princeton Healthcare Systems. 2011. "New Hospital Project". Website. November 2011. Princeton, NJ. < http://www.princetonhcs.org/default.aspx?p=8485>.

Statesupply.com

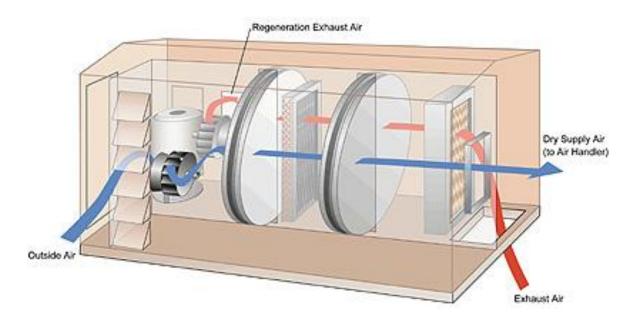
Syska Hennessy. 2009. MEP Construction Documents. Syska Hennessy. New York, NY. 2009.

Turner Construction. 2009. Turner Construction Corp. Mechanical Bid. Turner Construction Corp. New York, NY. 2009.

Qualityswitchgear.com


Thank You

PENNSTATEUniversity Medical Center of PrincetonTimothy Berteotti• Mechanical OptionTimothy Berteotti• Mechanical Option Turner


- Introduction
- University Medical Center of Princeton Overview
 - Building
 - Current systems
- Goals
- Depth
 - Replace HRUs with GSHP/GHX
 - Economic Analysis
 - Implement Micro Steam Turbines
- Electrical Breadth
- Acoustical Breadth
- Summary and Highlights
- Appendices

- Reduction in outdoor air
- Reduction in Energy Consumption

Economizer

Energy Recovery Wheel

Advantages

Disadvantages

- Cross Contamination
- More Control Logic and Sensors

Advantages

- Reduction in Energy Consumption
- Enthalpy Recovered

Disadvantages

- Cross Contamination
- Large Duct Work on Roof

PENNSTATE University Medical Center of Princeton	
Timothy Berteotti • Mechanical Option • Dr. Treado Turner	
• Introduction	Fewer Hea
 University Medical Center of Princeton Overview 	
• Building	Decrease v
• Current systems	Preheat wa
• Goals	
• Depth	
 Replace HRUs with GSHP/GHX 	
Economic Analysis	
Implement Micro Steam Turbines	
Electrical Breadth	
Acoustical Breadth	
 Summary and Highlights 	
• Appendices	

Hybrid Systems

- at Pumps in series provide large delta T mix into rest of flow
- water flow on load side by percent of current
- vater going into heat pump in winter to decrease delta T